alexa Nitrogen-containing bisphosphonate mechanism of action.
Biomedical Sciences

Biomedical Sciences

Journal of Biomedical Engineering and Medical Devices

Author(s): Reszka AA, Rodan GA

Abstract Share this page

Abstract The current paradigm for drug discovery requires the identification of a target involved in the disease process (e.g. enzyme or receptor) and the development of an appropriate ligand (activator, inhibitor or selective modulator). Selection of ligands for clinical development is based on the therapeutic window between efficacy vs. safety and ADME (absorption, distribution, metabolism and elimination) considerations. For bisphosphonates (BPs) the process has not followed that paradigm. BPs have very low absorption and are retained in bone, their target tissue. A few have been used on a limited basis for over 20 years in diseases of rapid bone destruction (e.g. post-menopausal osteoporosis, Paget's disease, bone metastases, etc.), without understanding their molecular mechanism of action. The nitrogen-containing BPs (N-BPs) are the latest and most potent addition to this family of compounds and have the widest use. They have high potency, are specifically targeted to the osteoclast on bone and are used at very low doses (5-10 mg clinically). Over the last four years, there was significant progress in elucidating the mechanism of action of BPs, both lacking and containing nitrogen. This review will focus on the mechanism of action of the N-BPs, specifically alendronate (ALN) and risedronate (RIS), the two agents most widely used. For these and all other N-BPs, the molecular target is the isoprenoid biosynthetic enzyme, farnesyl diphosphate synthase, in the cholesterol biosynthesis pathway. Although inhibition of this enzyme by N-BPs results in the suppression of sterol biosynthesis, it is actually disruption of a branch pathway, isoprenylation, that is responsible for N-BP pharmacological activity. Isoprenylation involves covalent linkage of the 15 or 20 carbon isoprene moiety farnesyl diphosphate or geranylgeranyl diphosphate, respectively, to the carboxy-terminus of regulatory proteins, including the small GTPases Ras, Rac, Rho and Cdc42. The latter three, as well as numerous others, are geranylgeranylated and play a rate-limiting role in the activity of the bone-resorbing osteoclast. This targeted osteoclast inhibition accounts for the potency of the N-BPs and for their ability to elicit the desired therapeutic response of suppressing bone turnover. The occasional gastrointestinal irritation caused by N-BPs appears to be mechanism-based and is also briefly reviewed.
This article was published in Mini Rev Med Chem and referenced in Journal of Biomedical Engineering and Medical Devices

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords