alexa Nitrous oxide related behavioral and histopathological changes may be related to oxidative stress.
Biochemistry

Biochemistry

Clinical & Medical Biochemistry

Author(s): Singh SK, Misra UK, Kalita J, Bora HK, Murthy RC

Abstract Share this page

Abstract Nitrous oxide (N₂O) toxicity can result in myelin loss and hyperhomocysteinemia similar to cobalamin (Cbl) deficiency. Studies on N₂O exposure can help in understanding the mechanism of demyelination. In view of paucity of studies on N₂O toxicity in rats this study was undertaken. Six male wistar rats were exposed to 1.5L/min N₂O with 1:1 O₂ for 90 min daily for 1 month. After 1-month exposure blood homocysteine (HCY) and oxidative stress parameters glutathione (GSH) and total antioxidant capacity (TAC) were measured. Brain and spinal cord was subjected to histopathological examination. The neurobehavioral changes, oxidative stress parameters and histopathological changes were correlated with serum B12 and HCY level. After 1-month exposure, the rats appeared sluggish, lethargic and developed predominantly hind limb weakness for 1-1.5h. In the exposed group, the total distance traveled (2001.66 ± 118.27 cm; p=0.037), time moving (80.16 ± 5.7s; p=0.028), number of rearing (10.33 ± 1.45; p=0.014) and grip strength (1042.40 ± 51.3N; p=0.041) were significantly decreased whereas, resting time significantly increased (219.83 ± 5.7s; p=0.030) compared to controls. Serum HCY level was significantly increased (20.56 ± 1.296 μm/ml; p=0.0007) in the exposed group. However, serum B12 and folic acid levels were not significantly different. GSH significantly decreased (2.21 ± 0.60 mg/dl; p=0.018) along with TAC (0.76 ± 0.16 Trolox_Eq_mmol/l; p=0.036). The histopathological studies revealed shrinkage and vacuolation of neurons in cerebral cortex, focal myelin loss, vacuolation in subcortical white matter and spinal cord. N₂O exposure results in behavioral alterations, hyperhomocysteinemia, cortical and spinal cord demyelination which were associated with decrease GSH and TAC highlighting pathophysiological role of oxidative stress. Copyright © 2015 Elsevier Inc. All rights reserved. This article was published in Neurotoxicology and referenced in Clinical & Medical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference on Biochemistry
    Sep 21-22, 2017 Macau, Hong Kong
  • 7th International Conference on Predictive, Preventive and Personalized Medicine & Molecular Diagnostics
    Oct 23-25, 2017 Chicago, USA
  • International Conference on Biotech Pharmaceuticals
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords