alexa NKT and CD8 lymphocytes mediate suppression of hepatocellular carcinoma growth via tumor antigen-pulsed dendritic cells.
Psychiatry

Psychiatry

Clinical Depression

Author(s): Shibolet O, Alper R, Zlotogarov L, Thalenfeld B, Engelhardt D,

Abstract Share this page

Abstract Dendritic cells (DCs) are antigen presenting cells that play a role in T-cell activation. Liver-associated natural killer T lymphocytes (NKTs) are a unique subset of lymphocytes that may be important in antitumor immunity. Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) expresses hepatitis B virus surface antigen (HBsAg) on its cell surface and may serve as a tumor-associated antigen. The aim of the study was to evaluate the antitumor effect of DC pulsed with tumor or viral-associated antigens in HBV-expressing HCC in mice and to determine the role of NKT lymphocytes in this process. Balb/c mice were sublethally irradiated and transplanted with Hep3b HCC cell line, followed by transplantation of naive splenocytes. DCs were separated using CD11c beads and pulsed with HBV-enveloped proteins (group A), HCC cell lysate (group B), or BSA (control group C). Mice were followed for survival and tumor size. To determine the mechanism of the antitumor effect, intrasplenic and intrahepatic lymphocyte subpopulations were analyzed by FACS for NKT, CD4 and CD8 markers. Tumor-associated antigens-specific IFNgamma ELISPOT, T-cell proliferation assays and serum cytokine analysis were performed. Treatment with tumor-associated antigen-pulsed DC significantly improved survival (40\% and 50\% as compared with 0\% in groups A, B, and control group C, respectively; p < 0.005). Tumor size decreased to 12.8 +/- 0.4 and 0 from 60.4 +/- 0.9 mm(3) in groups A, B, and control group C, respectively (p < 0.005). Adoptive transfer of HBV or Hep3b-associated antigens-pulsed DC induced a 6-fold increase in peripheral CD8(+) lymphocytes (from 1\% in control mice to 6\% and 5.5\% in groups A and B, respectively), along with a decrease in CD4(+) lymphocytes (from 3.5\% in controls to 1.4\% and 2.3\% in A and B, respectively; p < 0.005). The CD8(+)/CD4(+) ratio increased from 0.28 in controls to 4.28 and 2.39 in groups A and B, respectively (p < 0.005). Intrasplenic NKT cells increased from 7\% in control mice to 7.98\% and 14.6\% in groups A and B, respectively. In contrast, an opposite shift was observed inside the liver. Intrahepatic lymphocyte analysis showed a marked increase in CD4(+) and a decrease in CD8(+) lymphocytes in treated groups. The intrahepatic CD4(+) number increased from 0.5\% in controls to 2.15\% and 25.8\% in groups A and B, respectively (p < 0.005). In contrast, a significant decrease in the intrahepatic CD8(+) numbers was observed (from 7\% in controls to 1.0\% and 2.4\% in groups A and B, respectively; p < 0.005). A significant increase was noted in HBV-specific IFNgamma spot-forming T-cell colonies from 0.0 to 8.8 +/- 1.7 and 1.8 +/- 2.9 in groups C, A, and B, respectively (p < 0.005). Similarly, a significant increase in the HBV-specific T-cell stimulation index, from 0.8 +/- 0.2 to 7.2 +/- 0.4, in groups C and B, respectively, was noted (p < 0.002). IFNgamma and IL12 serum levels increased significantly in treated groups. IFNgamma and IL12 serum levels increased to 380 +/- 30 and 400 +/- 20, and 960 +/- 40 and 760 +/- 60 in groups A and B, compared with 150 +/- 16 and 490 +/- 40 pg/ml in control mice (p < 0.005). Tumor antigen-pulsed DCs effectively suppressed the growth of hepatocellular carcinoma in mice. This effect was associated with enhanced NKT and CD8(+) lymphocyte function and augmentation of the antitumor/antiviral-specific IFNgamma production. Copyright 2003 Wiley-Liss, Inc. This article was published in Int J Cancer and referenced in Clinical Depression

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords