alexa NLRP3 inflammasome-mediated neutrophil recruitment and hypernociception depend on leukotriene B(4) in a murine model of gout.
Immunology

Immunology

Journal of Cytokine Biology

Author(s): Amaral FA, Costa VV, Tavares LD, Sachs D, Coelho FM,

Abstract Share this page

Abstract OBJECTIVE: Deposition of monosodium urate monohydrate (MSU) crystals in the joints promotes an intense inflammatory response and joint dysfunction. This study evaluated the role of the NLRP3 inflammasome and 5-lipoxygenase (5-LOX)-derived leukotriene B(4) (LTB(4) ) in driving tissue inflammation and hypernociception in a murine model of gout. METHODS: Gout was induced by injecting MSU crystals into the joints of mice. Wild-type mice and mice deficient in NLRP3, ASC, caspase 1, interleukin-1β (IL-1β), IL-1 receptor type I (IL-1RI), IL-18R, myeloid differentiation factor 88 (MyD88), or 5-LOX were used. Evaluations were performed to assess neutrophil influx, LTB(4) activity, cytokine (IL-1β, CXCL1) production (by enzyme-linked immunosorbent assay), synovial microvasculature cell adhesion (by intravital microscopy), and hypernociception. Cleaved caspase 1 and production of reactive oxygen species (ROS) were analyzed in macrophages by Western blotting and fluorometric assay, respectively. RESULTS: Injection of MSU crystals into the knee joints of mice induced neutrophil influx and neutrophil-dependent hypernociception. MSU crystal-induced neutrophil influx was CXCR2-dependent and relied on the induction of CXCL1 in an NLRP3/ASC/caspase 1/IL-1β/MyD88-dependent manner. LTB(4) was produced rapidly after injection of MSU crystals, and this was necessary for caspase 1-dependent IL-1β production and consequent release of CXCR2-acting chemokines in vivo. In vitro, macrophages produced LTB(4) after MSU crystal injection, and LTB(4) was relevant in the MSU crystal-induced maturation of IL-1β. Mechanistically, LTB(4) drove MSU crystal-induced production of ROS and ROS-dependent activation of the NLRP3 inflammasome. CONCLUSION: These results reveal the role of the NLRP3 inflammasome in mediating MSU crystal-induced inflammation and dysfunction of the joints, and highlight a previously unrecognized role of LTB(4) in driving NLRP3 inflammasome activation in response to MSU crystals, both in vitro and in vivo. Copyright © 2012 by the American College of Rheumatology. This article was published in Arthritis Rheum and referenced in Journal of Cytokine Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords