alexa Nogo-66 promotes the differentiation of neural progenitors into astroglial lineage cells through mTOR-STAT3 pathway.


Orthopedic & Muscular System: Current Research

Author(s): Wang B, Xiao Z, Chen B, Han J, Gao Y,

Abstract Share this page

Abstract BACKGROUND: Neural stem/progenitor cells (NPCs) can differentiate into neurons, astrocytes and oligodendrocytes. NPCs are considered valuable for the cell therapy of injuries in the central nervous system (CNS). However, when NPCs are transplanted into the adult mammalian spinal cord, they mostly differentiate into glial lineage. The same results have been observed for endogenous NPCs during spinal cord injury. However, little is known about the mechanism of such fate decision of NPCs. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we have found that myelin protein and Nogo-66 promoted the differentiation of NPCs into glial lineage. NgR and mTOR-Stat3 pathway were involved in this process. Releasing NgR from cell membranes or blocking mTOR-STAT3 could rescue the enhanced glial differentiation by Nogo-66. CONCLUSIONS/SIGNIFICANCE: These results revealed a novel function of Nogo-66 in the fate decision of NPCs. This discovery could have profound impact on the understanding of CNS development and could improve the therapy of CNS injuries.
This article was published in PLoS One and referenced in Orthopedic & Muscular System: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version