alexa Non-Commutative Batalin-Vilkovisky Algebras, Homotopy Lie Algebras and the Courant Bracket


Journal of Generalized Lie Theory and Applications

Author(s): K Bering

Abstract Share this page

We consider two different constructions of higher brackets. First, based on a Grassmann-odd, nilpotent Δ operator, we define a non-commutative generalization of the higher Koszul brackets, which are used in a generalized Batalin-Vilkovisky algebra, and we show that they form a homotopy Lie algebra. Secondly, we investigate higher, so-called derived brackets built from symmetrized, nested Lie brackets with a fixed nilpotent Lie algebra element Q. We find the most general Jacobi-like identity that such a hierarchy satisfies. The numerical coefficients in front of each term in these generalized Jacobi identities are related to the Bernoulli numbers. We suggest that the definition of a homotopy Lie algebra should be enlarged to accommodate this important case. Finally, we consider the Courant bracket as an example of a derived bracket. We extend it to the “big bracket” of exterior forms and multi-vectors, and give closed formulas for the higher Courant brackets.

This article was published in Communications in Mathematical Physics and referenced in Journal of Generalized Lie Theory and Applications

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version