alexa Non-enzymatic glycation of bone collagen modifies osteoclastic activity and differentiation.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Valcourt U, Merle B, Gineyts E, ViguetCarrin S, Delmas PD,

Abstract Share this page

Abstract Type I collagen, the major organic component of bone matrix, undergoes a series of post-translational modifications that occur with aging, such as the non-enzymatic glycation. This spontaneous reaction leads to the formation of advanced glycation end products (AGEs), which accumulate in bone tissue and affect its structural and mechanical properties. We have investigated the role of matrix AGEs on bone resorption mediated by mature osteoclasts and the effects of exogenous AGEs on osteoclastogenesis. Using in vitro resorption assays performed on control- and AGE-modified bone and ivory slices, we showed that the resorption process was markedly inhibited when mature osteoclasts were seeded on slices containing matrix pentosidine, a well characterized AGE. More specifically, the total area resorbed per slice, and the area degraded per resorption lacuna created by osteoclasts, were significantly decreased in AGE-containing slices. This inhibition of bone resorption was confirmed by a marked reduction of the release of type I collagen fragments generated by the collagenolytic enzymes secreted by osteoclasts in the culture medium of AGE-modified mineralized matrices. This effect is likely to result from decreased solubility of collagen molecules in the presence of AGEs, as documented by the reduction of pepsin-mediated digestion of AGE-containing collagen. We found that AGE-modified BSA totally inhibited osteoclastogenesis in vitro, most likely by impairing the commitment of osteoclast progenitors into pre-osteoclastic cells. Although the mechanisms remain unknown, AGEs might interfere with osteoclastic differentiation and activity through their interaction with specific cell-surface receptors, because we showed that both osteoclast progenitors and mature osteoclasts expressed different AGEs receptors, including receptor for AGEs (RAGEs). These results suggest that AGEs decreased osteoclast-induced bone resorption, by altering not only the structural integrity of bone matrix proteins but also the osteoclastic differentiation process. We suggest that AGEs may play a role in the alterations of bone remodeling associated with aging and diabetes. This article was published in J Biol Chem and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version