alexa Nonenzymatic glycation of type I collagen modifies interaction with UMR 201-10B preosteoblastic cells.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Katayama Y, Celic S, Nagata N, Martin TJ, Findlay DM

Abstract Share this page

Abstract Advanced glycation endproduct (AGE), whose formation is accelerated on long lived extracellular matrix proteins in diabetes, is implicated in diabetic complications in various tissues. Type I collagen is the predominant matrix protein of bone and plays an important role in bone cell-matrix interactions. We have previously reported the accelerated accumulation of AGE collagen in bone tissue in diabetes mellitus (DM), in which reduced bone mineral density was observed. In addition, when cultures of mature primary rat osteoblasts were plated onto an in vitro AGE-modified collagen substrate, they showed altered cell functions, in terms of alkaline phosphatase (ALP) activity, osteocalcin secretion, and nodule formation (J Bone Miner Res 11:931-937; 1996). To determine whether AGE collagen might also affect differentiation of preosteoblasts, we compared the effects of plating the preosteoblastic UMR 201-10B cell line onto AGE-modified collagen with plating onto unmodified collagen. The latter had been shown previously to promote differentiation of UMR 201 cells. We have also explored whether these effects might be partly mediated by the transforming growth factor beta (TGF-beta) receptor. Growth of UMR 201-10B cells on a type I collagen substrate significantly inhibited cell growth and retinoic acid (RA)-induced upregulation of ALP activity, compared to cells on plastic. These inhibitory effects were reduced by prior glycation of collagen, in a dose-dependent manner with respect to AGE content. Unmodified collagen stimulated production of osteopontin mRNA, which was reduced by AGE modification to levels attained in cells on plastic. Growth on control collagen inhibited TGF-beta type II receptor binding in 10B cells, while this inhibition was reduced by AGE modification. These data suggest that glycation of collagen interferes with specific interaction(s) between UMR 201-10B cells and collagen. Based on our previous results in UMR 201 cells, these results would be compatible with the notion that glycated collagen has reduced ability to promote differentiation of preosteoblasts to mature osteoblasts. These data further suggest that collagen-mediated events in these cells may be at least in part mediated by regulation of the TGF-beta receptor expression.
This article was published in Bone and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords