alexa Non-enzymic copper reduction by menaquinone enhances copper toxicity in Lactococcus lactis IL1403.
Microbiology

Microbiology

Mycobacterial Diseases

Author(s): Abicht HK, Gonskikh Y, Gerber SD, Solioz M

Abstract Share this page

Abstract Lactococcus lactis possesses a pronounced extracellular Cu(2+)-reduction activity which leads to the accumulation of Cu(+) in the medium. The kinetics of this reaction were not saturable by increasing copper concentrations, suggesting a non-enzymic reaction. A copper-reductase-deficient mutant, isolated by random transposon mutagenesis, had an insertion in the menE gene, which encodes O-succinylbenzoic acid CoA ligase. This is a key enzyme in menaquinone biosynthesis. The ΔmenE mutant was deficient in short-chain menaquinones, and exogenously added menaquinone complemented the copper-reductase-deficient phenotype. Haem-induced respiration of wild-type L. lactis efficiently suppressed copper reduction, presumably by competition by the bd-type quinol oxidase for menaquinone. As expected, the ΔmenE mutant was respiration-deficient, but could be made respiration-proficient by supplementation with menaquinone. Growth of wild-type cells was more copper-sensitive than that of the ΔmenE mutant, due to the production of Cu(+) ions by the wild-type. This growth inhibition of the wild-type was strongly attenuated if Cu(+) was scavenged with the Cu(I) chelator bicinchoninic acid. These findings support a model whereby copper is non-enzymically reduced at the membrane by menaquinones. Respiration effectively competes for reduced quinones, which suppresses copper reduction. These findings highlight novel links between copper reduction, respiration and Cu(+) toxicity in L. lactis. This article was published in Microbiology and referenced in Mycobacterial Diseases

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords