alexa Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics.
Medicine

Medicine

Anatomy & Physiology: Current Research

Author(s): Cheng R, Shang Y, Hayes D Jr, Saha SP, Yu G

Abstract Share this page

Abstract Spontaneous low frequency oscillations (LFOs) around 0.1 Hz have been observed in mean arterial pressure (MAP) and cerebral blood flow velocity (CBFV). Previous studies have shown that cerebral autoregulation in major arteries can be assessed by quantification of the phase shift between LFOs of MAP and CBFV. However, many cerebral diseases are associated with abnormal microvasculature and tissue dysfunction in brain, and quantification of these abnormalities requires direct measurement of cerebral tissue hemodynamics. This pilot study used a novel hybrid near-infrared diffuse optical instrument to noninvasively and simultaneously detect LFOs of cerebral blood flow (CBF) and cerebral oxygenation (i.e., oxygenated/deoxygenated/total hemoglobin concentration: [HbO(2)]/[Hb]/THC) in human prefrontal cortex. Using the hybrid instrument and a finger plethysmograph, the dynamic changes of CBF, [HbO(2)], [Hb], THC and MAP were concurrently measured in 15 healthy subjects at rest, during 70° head-up-tilting (HUT) and during enforced breathing at 0.1 Hz. The LFOs were extracted from the measured variables using power spectral analysis, and the phase shifts and coherences of LFOs between MAP and each of the measured hemodynamic variables were calculated from the corresponding transfer functions. Levels of coherence (>0.4) were used to judge the success of LFO measurements. We found that CBF, [HbO(2)] and THC were reliable hemodynamic parameters in detecting LFOs and HUT was the most robust and stable protocol for quantifying phase shifts of hemodynamic LFOs. Comparing with other relevant studies, similar success rates for detecting cerebral LFOs have been achieved in our study. The phase shifts of LFOs in CBF were also close to those in CBFV reported by other groups, although the results in cerebral oxygenation measurements during enforced breathing varied across studies. Future study will investigate cerebral LFOs in patients with cerebral impairment and evaluate their cerebral autoregulation capabilities and neurocognitive functions via the quantification of LFO phase shifts. Copyright © 2012 Elsevier Inc. All rights reserved. This article was published in Neuroimage and referenced in Anatomy & Physiology: Current Research

Relevant Expert PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords