alexa Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): John Terrovitis, Riikka Lautamki, Michael Bonios, James Fox

Abstract Share this page

OBJECTIVES: The aim of this study was to quantify acute myocardial retention of cardiac-derived stem cells (CDCs) and evaluate different delivery methods with positron emission tomography (PET).

BACKGROUND: Success of stem cell transplantation for cardiac regeneration is partially limited by low retention/engraftment of the delivered cells. A clinically applicable method for accurate quantification of cell retention would enable optimization of cell delivery.

METHODS: The CDCs were derived from syngeneic, male Wistar Kyoto (WK) rats labeled with [(18)F]-fluoro-deoxy-glucose ((18)FDG) and injected intramyocardially into the ischemic region of female WK rats after permanent left coronary artery ligation. The effects of fibrin glue (FG), bradycardia (adenosine), and cardiac arrest were examined. Imaging with (18)FDG PET was performed for quantification of cell retention. Quantitative polymerase chain reaction (PCR) for the male-specific SRY gene was performed to validate the PET results.

RESULTS: Myocardial retention of cells suspended in phosphate-buffered saline 1 h after delivery was 17.6 +/- 11.5% by PCR and 17.8 +/- 7.3% by PET. When CDCs were injected immediately after induction of cardiac arrest, retention was increased to 75.6 +/- 18.6%. Adenosine slowed the ventricular rate and doubled CDC retention (35.4 +/- 5.3%). A similar increase in CDC retention was observed after epicardial application of FG at the injection site (37.5 +/- 8.2%). The PCR revealed a significant increase in 3-week cell engraftment in the FG animals (22.1 +/- 18.6% and 5.3 +/- 3.1%, for FG and phosphate-buffered saline, respectively).

CONCLUSIONS: In vivo PET permits accurate measurement of CDC retention early after intramyocardial delivery. Sealing injection sites with FG or lowering ventricular rate by adenosine might be clinically translatable methods for improving stem cell engraftment in a beating heart.

This article was published in J Am Coll Cardiol and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords