alexa Nonparametric pathway-based regression models for analysis of genomic data.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Wei Z, Li H

Abstract Share this page

Abstract High-throughout genomic data provide an opportunity for identifying pathways and genes that are related to various clinical phenotypes. Besides these genomic data, another valuable source of data is the biological knowledge about genes and pathways that might be related to the phenotypes of many complex diseases. Databases of such knowledge are often called the metadata. In microarray data analysis, such metadata are currently explored in post hoc ways by gene set enrichment analysis but have hardly been utilized in the modeling step. We propose to develop and evaluate a pathway-based gradient descent boosting procedure for nonparametric pathways-based regression (NPR) analysis to efficiently integrate genomic data and metadata. Such NPR models consider multiple pathways simultaneously and allow complex interactions among genes within the pathways and can be applied to identify pathways and genes that are related to variations of the phenotypes. These methods also provide an alternative to mediating the problem of a large number of potential interactions by limiting analysis to biologically plausible interactions between genes in related pathways. Our simulation studies indicate that the proposed boosting procedure can indeed identify relevant pathways. Application to a gene expression data set on breast cancer distant metastasis identified that Wnt, apoptosis, and cell cycle-regulated pathways are more likely related to the risk of distant metastasis among lymph-node-negative breast cancer patients. Results from analysis of other two breast cancer gene expression data sets indicate that the pathways of Metalloendopeptidases (MMPs) and MMP inhibitors, as well as cell proliferation, cell growth, and maintenance are important to breast cancer relapse and survival. We also observed that by incorporating the pathway information, we achieved better prediction for cancer recurrence. This article was published in Biostatistics and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version