alexa Non-Ras targets of farnesyltransferase inhibitors: focus on Rho.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Lebowitz PF, Prendergast GC

Abstract Share this page

Abstract Farnesyltransferase inhibitors (FTIs) are a novel class of cancer therapeutics whose development was based on the discovery that the function of oncogenic Ras depends upon its posttranslational farnesylation. Significantly, experiments in animal models have shown that FTIs have promise as nontoxic cancer therapeutics. However, cell biological studies have suggested that FTIs may act at a level beyond that of suppressing Ras function, so the exact mechanism of action has emerged as a question of major interest. Here, we review evidence that proteins other than Ras are important targets for inhibition, summarize findings suggesting a role for farnesylated Rho proteins prompted by studies on RhoB, and suggest a new model for how FTIs exert their biological effects. The 'FTI-Rho hypothesis' proposes that FTIs act in part by altering Rho-dependent cell adhesion signals which are linked to pathways controlling cell cycle and cell survival and which are subverted or defective in neoplastic cells. This model offers a novel framework for addressing the questions about FTI biology, including the basis for lack of toxicity to normal cells, cytotoxic versus cytostatic effects on tumor cells, and the persistence and drug resistance of malignant cells in FTI-treated animals. This article was published in Oncogene and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords