alexa Non-response models for the analysis of non-monotone ignorable missing data.
Mathematics

Mathematics

Journal of Biometrics & Biostatistics

Author(s): Robins JM, Gill RD

Abstract Share this page

Abstract We discuss a new class of ignorable non-monotone missing data models-the randomized monotone missingness (RMM) models. We argue that the RMM models represent the most general plausible physical mechanism for generating non-monotone ignorable data. We show that there exists ignorable missing data processes that are not RMM. We argue that it may therefore be inappropriate to analyse non-monotone missing data under the assumption that the missingness mechanism is ignorable, if a statistical test has rejected the hypothesis that the missing data process is RMM representable. We use RMM models to analyse data from a case-control study of the effects of radiation on breast cancer.
This article was published in Stat Med and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords