alexa Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): VanInsberghe D, Maas KR, Cardenas E, Strachan CR, ,

Abstract Share this page

Abstract The genus Bradyrhizobium has served as a model system for studying host-microbe symbiotic interactions and nitrogen fixation due to its importance in agricultural productivity and global nitrogen cycling. In this study, we identify a bacterial group affiliated with this genus that dominates the microbial communities of coniferous forest soils from six distinct ecozones across North America. Representative isolates from this group were obtained and characterized. Using quantitative population genomics, we show that forest soil populations of Bradyrhizobium represent ecotypes incapable of nodulating legume root hairs or fixing atmospheric nitrogen. Instead, these populations appear to be free living and have a greater potential for metabolizing aromatic carbon sources than their close symbiotic relatives. In addition, we identify fine-scaled differentiation between populations inhabiting neighboring soil layers that illustrate how diversity within Bradyrhizobium is structured by habitat similarity. These findings reconcile incongruent observations about this widely studied and important group of bacteria and highlight the value of ecological context to interpretations of microbial diversity and taxonomy. These results further suggest that the influence of this genus likely extends well beyond facilitating agriculture, especially as forest ecosystems are large and integral components of the biosphere. In addition, this study demonstrates how focusing research on economically important microorganisms can bias our understanding of the natural world.
This article was published in ISME J and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords