alexa Non-viral S MAR vectors replicate episomally in vivo when provided with a selective advantage.
Molecular Biology

Molecular Biology

Journal of Cell Science & Therapy

Author(s): Wong SP, Argyros O, Coutelle C, Harbottle RP

Abstract Share this page

Abstract The ideal gene therapy vector should enable persistent expression without the limitations of safety and reproducibility. We previously reported that a prototype plasmid vector, containing a scaffold matrix attachment region (S/MAR) domain and the luciferase reporter gene, showed transgene expression for at least 6 months following a single administration to MF1 mice. Following partial hepatectomy of the animals, however, we found no detectable vector replication and subsequent propagation in vivo. To overcome this drawback, we have now developed an in vivo liver selection strategy by which liver cells transfected with an S/MAR plasmid are provided with a survival advantage over non-transfected cells. This allows an enrichment of vectors that are capable of replicating and establishing themselves as extra-chromosomal entities in the liver. Accordingly, a novel S/MAR plasmid encoding the Bcl-2 gene was constructed; Bcl-2 expression confers resistance against apoptosis-mediated challenges by the Fas-activating antibody Jo2. Following hydrodynamic delivery to the livers of mice and frequent Jo2 administrations, we demonstrate that this Bcl-luciferase S/MAR plasmid is indeed capable of providing sustained luciferase reporter gene expression for over 3 months and that this plasmid replicates as an episomal entity in vivo. These results provide proof-of-principle that S/MAR vectors are capable of preventing transgene silencing, are resistant to integration and are able to confer mitotic stability in vivo when provided with a selective advantage. This article was published in Gene Ther and referenced in Journal of Cell Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords