alexa Normal human urothelial cells in vitro: proliferation and induction of stratification.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Southgate J

Abstract Share this page


The purpose of the work was to establish urothelium as an in vitro model for the study of proliferation, stratification, and differentiation in "complex" epithelia.


Normal human urothelial cells were cultured in a serum-free medium. The effects of epidermal growth factor (EGF), cholera toxin (CT), extracellular calcium and 13-cis-retinoic acid on cell growth, morphology, phenotype, and cytodifferentiation were studied using phase-contrast microscopy and indirect immunofluorescence. Stratification-related changes were additionally analyzed by transmission electron microscopy.


Under optimized conditions, long-term cultures were successful in 44 (74.5%) out of 59 specimens. Bacterial infection was the most common cause of failure (9 cases). Primary urothelial cells required an initial plating density of > or = 10(4) cells/cm2 for survival; passaged cells survived much lower plating densities (> or = 2.5 x 10(2) cells/cm2). CT significantly improved cell attachment, but neither CT nor EGF were essential for growth. By contrast, cells failed to proliferate without bovine pituitary extract. In media containing bovine pituitary extract, CT, and EGF, cultures had a mean population doubling time of 14.7 +/- 1.8 hours, maintained a nonstratified phenotype, and expressed the cytokeratin (CK) profile of basal/intermediate urothelium: CK7, CK8, CK17, CK18 and CK19, with variable expression of CK13. CK20 was not expressed in vitro. CK14 and CK16 were also expressed, suggestive of squamous metaplasia in culture, which could be inhibited with 13-cis-retinoic acid. Increasing extracellular calcium from 0.09 to 0.9-4.0 mM slowed cell proliferation, induced stratification and desmosome formation, and increased expression of E-cadherin. High calcium, EGF, CT, and retinoic acid did not induce markers of late/terminal urothelial cytodifferentiation.


We describe a simplified technique for the isolation and long-term culture of human urothelial cells. Urothelial cells in vitro are capable of rapid proliferation and can be induced to form integrated stratifying cell layers in high calcium medium. Stratification-related changes are not necessarily accompanied by urothelial cell maturation and differentiation.

  • To read the full article Visit
  • Open Access
This article was published in Lab Invest. and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version