alexa Novel and direct access to the human locomotor spinal circuitry.


Epilepsy Journal

Author(s): Gerasimenko Y, Gorodnichev R, Machueva E, Pivovarova E, Semyenov D, , Gerasimenko Y, Gorodnichev R, Machueva E, Pivovarova E, Semyenov D,

Abstract Share this page

Abstract The degree of automaticity of locomotion in primates compared with other mammals remains unclear. Here, we examine the possibility for activation of the spinal locomotor circuitry in noninjured humans by spinal electromagnetic stimulation (SEMS). SEMS (3 Hz and 1.3-1.82 tesla) at the T11-T12 vertebrae induced involuntary bilateral locomotor-like movements in the legs of individuals placed in a gravity-neutral position. The formation of locomotor-like activity during SEMS started with a latency of 0.68 +/- 0.1 s after delivering the first stimulus, unlike continuous vibration of muscles, which requires several seconds. The first EMG burst in response to SEMS was observed most often in a proximal flexor muscle. We speculate that SEMS directly activates the circuitry intrinsic to the spinal cord, as suggested by the immediate response and the electrophysiological observations demonstrating an absence of strictly time-linked responses within the EMG burst associated with individual stimuli during SEMS. SEMS in the presence of vibration of the leg muscles was more effective in facilitating locomotor-like activity than SEMS alone. The present results suggest that SEMS could be an effective noninvasive clinical tool to determine the potential of an individual to recover locomotion after a spinal cord injury, as well as being an effective rehabilitation tool itself.
This article was published in J Neurosci and referenced in Epilepsy Journal

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version