alexa Novel antitumor prodrugs designed for activation by matrix metalloproteinases-2 and -9.


Journal of Cancer Science & Therapy

Author(s): Kline T, Torgov MY, Mendelsohn BA, Cerveny CG, Senter PD

Abstract Share this page

Abstract Enzyme prodrug monotherapy takes advantage of the selectivity and specificity of enzymes that are differentially active in the immediate environment of tumor cells. Matrix metalloproteinases-2 and -9 (MMP-2 and -9, respectively) are cell-surface Zn-dependent endoproteases associated with diverse processes throughout tumor formation and progression. These enzymes have demonstrated high ratios of tumor- to nontumor-associated activity and may represent candidates for antitumor prodrug activation. Our MMP targeting strategy was to prepare and evaluate two classes of enzyme prodrugs, peptides and sequence-similar peptidomimetics, and determine which would be substrates for the enzymes and thus suitable for further in vitro and in vivo evaluation. We selected representatives of three structurally and mechanistically distinct classes of compounds for delivery, doxorubicin, several auristatins (novel synthetic members of the dolastatin class of tubulin polymerization inhibitors), and CBI-TMI (a duocarmycin class minor groove binder). The drugs were acylated on available amines with the broadly recognized MMP substrate P3-P1' sequence acetyl L-prolyl-L-leucyl-glycyl-L-leucine, or with a peptidomimetic analogue. From a panel of four peptides and four peptidomimetics, two compounds, both peptides, were found to be substrates, with specific activities in the range of 1-20 nmol min(-1) mg(-1). For MMP-9, complete conversion took place in 4-16 h; proteolysis by MMP-2 was considerably slower. Cleavage occurred, as predicted, at the Gly-Leu bond to liberate a leucyl drug, and no other intermediates or cleavage products were observed. Although the MMP-9 proteolysis products were equipotent with the parent leucyl drugs, the prodrugs were not differentially active against MMP-2 or -9-expressing versus nonexpressing cell lines during a 4 h exposure. Our data can be interpreted in light of the current understanding of the structural and mechanistic factors governing MMP-2 and -9 proteolysis.
This article was published in Mol Pharm and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version