alexa Novel camptothecin analogue (gimatecan)-containing liposomes prepared by the ethanol injection method.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Stano P, Bufali S, Pisano C, Bucci F, Barbarino M,

Abstract Share this page

Abstract Small-sized liposomes have several advantages as drug delivery systems, and the ethanol injection method is a suitable technique to obtain the spontaneous formation of liposomes having a small average radius. In this paper, we show that liposomal drug formulations can be prepared in situ, by simply injecting a drug-containing lipid(s) organic solution into an aqueous solution. Several parameters should be optimized in order to obtain a final suitable formulation, and this paper is devoted to such an investigation. Firstly, we study the liposome size distributions determined by dynamic light scattering (DLS), as function of the lipid concentration and composition, as well as the organic and aqueous phases content. This was carried out, firstly, by focusing on POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) then on the novel L-carnitine derivative PUCE (palmitoyl-(R)-carnitine undecyl ester chloride), showing that it is possible to obtain monomodal size distributions of rather small vesicles. In particular, depending on the conditions, it was possible to achieve a population of liposomes with a mean size of 100 nm, when a 50 mM POPC ethanol solution was injected in pure water; in the case of 50 mM PUCE the mean size was around 30 nm, when injected in saline (0.9\% NaCl). The novel anticancer drug Gimatecan, a camptothecin derivative, was used as an example of lipophilic drug loading by the injection method. Conditions could be found, under which the resultant liposome size distributions were not affected by the presence of Gimatecan, in the case of POPC as well as in the case of PUCE. To increase the overall camptothecin concentration in the final liposomal dispersion, the novel technique of "multiple injection method" was used, and up to a final 5 times larger amount of liposomal drug could be reached by maintaining approximately the same size distribution. Once prepared, the physical and chemical stability of the liposome formulations was satisfactory within 24, as judged by DLS analysis and HPLC quantitation of lipids and drug. The Gimatecan-containing liposomes formulations were also tested for in vitro and in vivo activity, against the human nonsmall cell lung carcinoma NCI-H460 and a murine Lewis lung carcinoma 3 LL cell lines. In the in vitro tests, we did not observe any improvement or reduction of the Gimatecan pharmacological effect by the liposomal delivery system. More interestingly, in the in vivo Lewis lung carcinoma model, the intravenously administration of liposomal Gimatecan formulation showed a mild but significant increase of Tumor Volume Inhibition with respect to the oral no-liposomal formulation (92\% vs. 86 \%, respectively; p < 0.05). Finally, our study showed that the liposomal formulation was able to realize a delivery system of a water-insoluble drug, providing a Gimatecan formulation for intravenous administration with a preserved antitumoral activity. This article was published in J Liposome Res and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords