alexa Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Bengtsson SH, Gulluyan LM, Dusting GJ, Drummond GR

Abstract Share this page

Vascular cells have evolved to use reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, as signalling molecules. Under physiological conditions, ROS are important regulators of cell cycle, protein kinase activity and gene expression. However, in vascular disease states, such as hypertension and hypercholesterolaemia, excessive production of ROS may overwhelm the anti-oxidant defence mechanisms of cells, resulting in 'oxidative stress', damage to the artery wall and, ultimately, development of atherosclerotic plaques. 2. The primary source of ROS in the vasculature is NADPH oxidase. There appear to be at least three isoforms of NADPH oxidase expressed in the vascular wall, each differing with respect to the flavin-containing catalytic subunit it uses to transfer electrons from NADPH to molecular oxygen. Thus, although endothelial cells and adventitial fibroblasts express a gp91phox-containing NADPH oxidase similar to that originally identified in phagocytes, vascular smooth muscle cells may rely on novel homologues of gp91phox, namely Nox1 and Nox4, to produce superoxide. 3. Controversy remains over which isoform(s) of NADPH oxidase is responsible for the oxidative stress associated with vascular diseases. We and others have shown that although gp91phox mRNA expression is upregulated during atherogenesis in human and animal models, expression of the Nox4 subunit remains unchanged. Nox1 expression is also likely to be increased in diseased arteries; however, its relative level of expression, at least at the mRNA level, appears to be markedly lower than that of the other gp91phox homologues, even after upregulation. 4. Whether these findings suggest that a gp91phox-containing NADPH oxidase is more important than either Nox4 or Nox1 in vascular disease awaits studies examining relative protein expression and enzyme kinetics of each subunit, as well as the effects of targeted gene deletion of each of these gp91phox homologues on atherogenesis.

  • To read the full article Visit
  • Open Access
This article was published in Clin Exp Pharmacol Physiol and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version