alexa Novel major bacterial candidate division within a municipal anaerobic sludge digester.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): Chouari R, Le Paslier D, Dauga C, Daegelen P, Weissenbach J,

Abstract Share this page

Abstract In a previous study, we analyzed the molecular diversity of Planctomycetales by PCR amplification and sequencing of 16S rRNA clone libraries generated from a municipal wastewater plant, using planctomycete-specific and universal primer sets (R. Chouari, D. Le Paslier, P. Daegelen, P. Ginestet, J. Weissenbach, and A. Sghir, Appl. Environ. Microbiol. 69:7354-7363, 2003). Only a small fraction (4\%) of the 16S rRNA gene sequences of the digester clone library corresponded to the Planctomycetales division. Importantly, 85.9\% of the digester clone sequences are grouped into two different clusters named WWE1 (81.4\% of the sequences) and WWE2 (4.5\%) and are distantly affiliated with unidentified bacterial sequences retrieved from a methanogenic reactor community and from a termite gut, respectively. In phylogenetic analysis using 16S rRNA gene sequence representatives of the main phylogenetic bacterial divisions, the two clusters are monophyletic, branch apart from each other, and are distantly related to Planctomycetales and other bacterial divisions. A novel candidate division is proposed for WWE1, while the WWE2 cluster strongly affiliates with the recently proposed Lentisphearae phylum. We designed and validated a 16S rRNA probe targeting WWE1 16S rRNA sequences by both fluorescent in situ hybridization (FISH) and dot blot hybridization (DBH). Results of FISH analysis show that WWE1 representative microorganisms are rods or filamentous shaped, while DBH shows that WWE1 accounts for 12\% of the total bacterial rRNA within the anaerobic digester. The remaining 16S rRNA gene sequences are affiliated with Verrucomicrobia or recently described candidate divisions with no known pure culture representatives, such as OD1, BRC1, or NBL-UPA2, making up less than 3.5\% of the clone library, respectively. This inventory expands the known diversity of the latter bacterial division-level lineages.
This article was published in Appl Environ Microbiol and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version