alexa Novel nitric oxide synthase--dependent mechanism of vasorelaxation in small arteries from hypertensive rats.
Cardiology

Cardiology

Journal of Hypertension: Open Access

Author(s): Kang KT, Sullivan JC, Sasser JM, Imig JD, Pollock JS

Abstract Share this page

Abstract To determine the mechanism(s) involved in vasorelaxation of small arteries from hypertensive rats, normotensive (NORM), angiotensin II-infused (ANG), high-salt (HS), ANG high-salt (ANG/HS), placebo, and deoxycorticosterone acetate-salt rats were studied. Third-order mesenteric arteries from ANG or ANG/HS displayed decreased sensitivity to acetylcholine (ACh)-induced vasorelaxation compared with NORM or HS, respectively. Maximal relaxations were comparable between groups. Blockade of Ca(2+)-activated K(+) channels had no effect on ANG versus blunting relaxation in NORM (log EC(50): -6.8+/-0.1 versus -7.2+/-0.1 mol/L). NO synthase (NOS) inhibition abolished ACh-mediated relaxation in small arteries from ANG, ANG/HS, and deoxycorticosterone acetate-salt versus blunting relaxation in NORM, HS, and placebo (\% maximal relaxation: ANG: 2.7+/-1.8; ANG/HS: 7.2+/-3.2; NORM: 91+/-3.1; HS: 82.1+/-13.3; deoxycorticosterone acetate-salt: 35.2+/-17.7; placebo: 79.3+/-10.3), indicating that NOS is the primary vasorelaxation pathway in these arteries from hypertensive rats. We hypothesized that NO/cGMP signaling and NOS-dependent H(2)O(2) maintains vasorelaxation in small arteries from ANG. ACh increased NOS-dependent cGMP production, indicating that NO/cGMP signaling is present in small arteries from ANG (55.7+/-6.9 versus 30.5+/-5.1 pmol/mg), and ACh stimulated NOS-dependent H(2)O(2) production (ACh: 2.8+/-0.2 micromol/mg; N(omega)-nitro-l-arginine methyl ester hydrochloride+ACh: 1.8+/-0.1 micromol/mg) in small arteries from ANG. H(2)O(2) induced vasorelaxation and catalase blunted ACh-mediated vasorelaxation. In conclusion, Ca(2+)-activated K(+) channel-mediated relaxation is dysfunctional in small mesenteric arteries from hypertensive rats, and the NOS pathway compensates to maintain vasorelaxation in these arteries through NOS-mediated cGMP and H(2)O(2) production. This article was published in Hypertension and referenced in Journal of Hypertension: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Hypertension and Healthcare
    Tokyo , Japan
  • 4th International Conference on Hypertension & Healthcare
    Zurich, Switzerland
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords