alexa Novel role for glutathione S-transferase pi. Regulator of protein S-Glutathionylation following oxidative and nitrosative stress.


Biochemistry & Analytical Biochemistry

Author(s): Townsend DM, Manevich Y, He L, Hutchens S, Pazoles CJ,

Abstract Share this page

Abstract Glutathione S-transferase Pi (GSTpi) is a marker protein in many cancers and high levels are linked to drug resistance, even when the selecting drug is not a substrate. S-Glutathionylation of proteins is critical to cellular stress response, but characteristics of the forward reaction are not known. Our results show that GSTpi potentiates S-glutathionylation reactions following oxidative and nitrosative stress in vitro and in vivo. Mutational analysis indicated that the catalytic activity of GST is required. GSTpi is itself redox-regulated. S-Glutathionylation on Cys47 and Cys101 autoregulates GSTpi, breaks ligand binding interactions with c-Jun NH2-terminal kinase (JNK), and causes GSTpi multimer formation, all critical to stress response. Catalysis of S-glutathionylation at low pK cysteines in proteins is a novel property for GSTpi and may be a cause for its abundance in tumors and cells resistant to a range of mechanistically unrelated anticancer drugs.
This article was published in J Biol Chem and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version