alexa Novel sorbents for removal of gadolinium-based contrast agents in sorbent dialysis and hemoperfusion: preventive approaches to nephrogenic systemic fibrosis.
General Science

General Science

Research & Reviews: Journal of Botanical Sciences

Author(s): Yantasee W, Fryxell GE, Porter GA, Pattamakomsan K, Sukwarotwat V, , Yantasee W, Fryxell GE, Porter GA, Pattamakomsan K, Sukwarotwat V, , Yantasee W, Fryxell GE, Porter GA, Pattamakomsan K, Sukwarotwat V, , Yantasee W, Fryxell GE, Porter GA, Pattamakomsan K, Sukwarotwat V,

Abstract Share this page

Abstract Many forms of organocomplexed gadolinium (Gd) contrast agents have recently been linked to a debilitating and a potentially fatal skin disease called nephrogenic systemic fibrosis (NSF) in patients with renal failure. Free Gd released from these complexes via transmetallation is believed to be the most important trigger for NSF. In this work, nanostructure silica materials that have been functionalized with 1-hydroxy-2-pyridinone (1,2-HOPO-SAMMS) have been evaluated for selective and effective removal of both free and chelated Gd (gadopentetate dimeglumine and gadodiamide) from dialysate and blood. 1,2-HOPO SAMMS has high affinity, rapid removal rate, and large sorption capacity for both free and chelated Gd, properties that are far superior to those of activated carbon and zirconium phosphate currently used in the state-of-the-art sorbent dialysis and hemoperfusion systems. The SAMMS-based sorbent dialysis and hemoperfusion will potentially provide an effective and predicable strategy for removing the Gd from patients with impaired renal function after Gd exposure, thus allowing for the continued use of Gd-based contrast magnetic resonance imaging while removing the risk of NSF. FROM THE CLINICAL EDITOR: Chelated gadolinium (Gd) contrast agents have been linked to a debilitating disease called nephrogenic systemic fibrosis (NSF) in patients with renal failure. Free Gd+(3) released from the contrast agents is believed to be the trigger for NSF. In this work, functionalized nanostructured silica materials were evaluated for removal of both free and chelated gadolinium both from dialysate and blood. The new method demonstrated a rapid removal rate and large sorption capacity, and overall was far superior to currently used state-of-the-art sorbent dialysis and hemoperfusion systems. Copyright 2010 Elsevier Inc. All rights reserved.
This article was published in Nanomedicine and referenced in Research & Reviews: Journal of Botanical Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords