alexa NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer.


Chemotherapy: Open Access

Author(s): Hayes JD, McMahon M

Abstract Share this page

Transcription factor nuclear factor-erythroid 2-related factor 2 (NRF2) controls cellular adaptation to oxidants and electrophiles by inducing antioxidant and detoxification genes in response to redox stress. NRF2 is negatively regulated by Kelch-like ECH-associated protein 1 (KEAP1). Tumours from approximately 15% of patients with lung cancer harbour somatic mutations in KEAP1 that prevent effective NRF2 repression. Recently, two NRF2 mutation 'hot-spots' were identified in approximately 10% of patients with lung cancer, enabling the transcription factor to evade KEAP1-mediated repression. Somatic mutations in KEAP1 and NRF2 provide an insight into the molecular mechanisms by which NRF2 is regulated. Moreover, constitutive NRF2 activation might cause drug resistance in tumours, and an understanding of how the transcription factor is regulated indicates ways in which this could be overcome.

  • To read the full article Visit
  • Open Access
This article was published in Trends Biochem Sci. and referenced in Chemotherapy: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version