alexa Nuclear-delimited angiotensin receptor-mediated signaling regulates cardiomyocyte gene expression.
Engineering

Engineering

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

Author(s): Tadevosyan A, Maguy A, Villeneuve LR, Babin J, Bonnefoy A,

Abstract Share this page

Abstract Angiotensin-II (Ang-II) from extracardiac sources and intracardiac synthesis regulates cardiac homeostasis, with mitogenic and growth-promoting effects largely due to altered gene expression. Here, we assessed the possibility that angiotensin-1 (AT1R) or angiotensin-2 (AT2R) receptors on the nuclear envelope mediate effects on cardiomyocyte gene expression. Immunoblots of nucleus-enriched fractions from isolated cardiomyocytes indicated the presence of AT1R and AT2R proteins that copurified with the nuclear membrane marker nucleoporin-62 and histone-3, but not markers of plasma (calpactin-I), Golgi (GRP-78), or endoplasmic reticulum (GM130) membranes. Confocal microscopy revealed AT1R and AT2R proteins on nuclear membranes. Microinjected Ang-II preferentially bound to nuclear sites of isolated cardiomyocytes. AT1R and AT2R ligands enhanced de novo RNA synthesis in isolated cardiomyocyte nuclei incubated with [alpha-(32)P]UTP (e.g. 36.0 +/- 6.0 cpm/ng of DNA control versus 246.4 +/- 15.4 cpm/ng of DNA Ang-II, 390.1 +/- 15.5 cpm/ng of DNA L-162313 (AT1), 180.9 +/- 7.2 cpm/ng of DNA CGP42112A (AT2), p < 0.001). Ang-II application to cardiomyocyte nuclei enhanced NFkappaB mRNA expression, a response that was suppressed by co-administration of AT1R (valsartan) and/or AT2R (PD123177) blockers. Dose-response experiments with Ang-II applied to purified cardiomyocyte nuclei versus intact cardiomyocytes showed greater increases in NFkappaB mRNA levels at saturating concentrations with approximately 2-fold greater affinity upon nuclear application, suggesting preferential nuclear signaling. AT1R, but not AT2R, stimulation increased [Ca(2+)] in isolated cardiomyocyte nuclei. Inositol 1,4,5-trisphosphate receptor blockade by 2-aminoethoxydiphenyl borate prevented AT1R-mediated Ca(2+) release and attenuated AT1R-mediated transcription initiation responses. We conclude that cardiomyocyte nuclear membranes possess angiotensin receptors that couple to nuclear signaling pathways and regulate transcription. Signaling within the nuclear envelope (e.g. from intracellularly synthesized Ang-II) may play a role in Ang-II-mediated changes in cardiac gene expression, with potentially important mechanistic and therapeutic implications.
This article was published in J Biol Chem and referenced in International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords