alexa Nucleotide composition as a driving force in the evolution of retroviruses.
Microbiology

Microbiology

Virology & Mycology

Author(s): Bronson EC, Anderson JN

Abstract Share this page

Abstract All complete retrovirus sequences in the GenEMBL database were examined with the goal of assessing possible relationships between the nucleotide composition of retroviral genomes, the amino acid composition of retroviral proteins, and evolutionary strategies used by retroviruses. The results demonstrated that the genome of each viral lineage has a characteristic base composition and that the variations between groups are related to retroviral phylogeny. By analogy to microbial species, we suggest that the variations arise from group-specific patterns of directional mutations where the bias can be exerted on any of the four nucleotides. It is most likely that the mutational patterns are introduced during reverse transcription, and a direct participation of reverse transcriptase in the process is suspected. A straightforward strategy was used to analyze the compositional relationship between nucleotides and encoded amino acids. The procedure entailed calculations of amino acid frequencies from nucleotide content and the comparison of the calculated values to the observed amino acid frequencies in retroviruses. The results revealed an excellent correspondence between variation in genomic base composition and variation in amino acid composition of proteins with the compositional differences extending into all major coding regions of the viruses. Because of the magnitude and dispersion of these effects, and because of the nonconservative nature of many of the substitutions between groups with different genomic biases, we suggest that the variations in protein composition driven by biased nucleotide frequencies are an important factor in shaping the characteristic phenotypes of the different viral lineages. A clue to the nature of the evolutionary forces that are responsible for the generation of nucleotide biases was provided by the observation that viruses with radically different base frequencies most often inhabit the same cell type. This observation, along with analysis of amino acid and nucleotide replacement patterns between and within reverse transcriptase sequences from the various groups, permitted us to advance a model for the evolution of retroviruses. According to the model, speciation could initiate when daughter virions from a single progenitor vary in the direction of their mutational bias. These variations would exert a pleiotropic effect on the frequencies of nucleotides in all viral genes and consequently on the frequencies of amino acids in the encoded proteins. The variants with the most extreme compositional differences would have a selective advantage because their different precursor requirements would enable them to occupy different ecological niches within a single cell.(ABSTRACT TRUNCATED AT 400 WORDS)
This article was published in J Mol Evol and referenced in Virology & Mycology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords