alexa Numerical modelling of fracture in human arteries.
General Science

General Science

Journal of Forensic Biomechanics

Author(s): Ferrara A, Pandolfi A

Abstract Share this page

Abstract We present 3D finite element models of atherosclerotic arteries, used to investigate the influence of the geometry and tissue properties on the plaque rupture caused by overexpansion. We adopted a geometry reconstructed from a contiguous set of in vitro magnetic resonance images of a damaged artery. The artery wall is divided in three layers (adventitia, media and intima) and is discretized into tetrahedral finite elements. The artery material is described with a hyperelastic two-fiber anisotropic model proposed by Holzapfel et al. 2000. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity 61(1):1-48, while the plaque is assumed to be transversely isotropic. Cracks induced by mechanical actions are represented through cohesive surfaces, and are allowed to develop along solid elements boundaries only. Fractures are explicitly introduced in the discretized model at the locations where the tensile strength of the material is reached. This article was published in Comput Methods Biomech Biomed Engin and referenced in Journal of Forensic Biomechanics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version