alexa Nutritional and developmental regulation of insulin-like growth factors in fish.
Agri and Aquaculture

Agri and Aquaculture

Fisheries and Aquaculture Journal

Author(s): Duan C

Abstract Share this page

Abstract The insulin-like growth factors (IGF) are evolutionarily ancient growth factors present in all vertebrates. The central importance of IGF for normal development and growth has been illustrated by the severe growth-retarded phenotype exhibited by IGF-I, IGF-II or IGF-I receptor "knockout" mice. Although we know much about the gross effects of IGF on the overall size of the fetus and the clinical manifestations that result from fetal and neonatal deficiency of IGF (i.e., severe growth retardation leads to dwarfism), very little is known about the in vivo actions of IGF during embryogenesis at the cellular and molecular levels. Most research on the developmental role of IGF has relied on rodent models, and attempts to elucidate the molecular and cellular basis of IGF actions have been hampered by the inaccessibility of the mammalian fetus enclosed in the uterus. During the past decade, there has been growing support for the concept that the IGF have been highly conserved in all vertebrates. Both IGF-I and IGF-II are present in fish, and their structures are highly conserved. Human and fish IGF-I are equally potent in mammalian and fish bioassay systems. Insulin-like growth factor mRNA is found in all life stages of fish, ranging from unfertilized egg to adult. The temporal and spatial expression patterns of fish IGF-I seem to be similar to those in mammals. Nutritional status and growth hormone both have a profound effect on IGF-I expression in fish, as they do in mammals. These features suggest that the IGF system is highly conserved between teleost fish and mammals. Because fish embryos develop externally, they provide excellent animal models for understanding the regulatory roles of IGF, IGF receptor and IGF-binding proteins in vertebrate embryonic development. Current research on the developmental and nutritional roles of IGF in fish will undoubtedly contribute to knowledge of the basic physiology of vertebrates in general.
This article was published in J Nutr and referenced in Fisheries and Aquaculture Journal

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version