alexa Obesity-driven alterations in adipose-derived stem cells are partially restored by weight loss.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Prez LM, Surez J, Bernal A, de Lucas B, San Martin N,

Abstract Share this page

Abstract OBJECTIVE: The therapeutic potential of adipose-derived stem cells (ASCs) is reduced by various stress-inducing conditions that affect tissue homeostasis such as diabetes, aging, and obesity. Previous works have provided evidence of negative effects of obesity on ASC populations, but it is unclear whether this persists after a weight loss. This study evaluated whether weight loss can restore the attenuated properties found in ASCs derived from populations with obesity (oASCs). METHODS: In vitro functional analyses were performed to investigate the possible recovery properties in mouse oASCs. Using ASCs isolated from subcutaneous tissue from formerly obese mice (dASCs) and control mice (cASCs), cell proliferation, viability, and some regenerative properties in these cells were analyzed compared with oASCs to evaluate the functional cell state. RESULTS: Cell proliferation, viability, and some regenerative properties are strengthened in dASCs and cASCs compared with oASCs. Nevertheless, metabolic analysis reveals a mitochondrial load misbalance and function leading to impaired respiration in dASCs. CONCLUSIONS: This study demonstrates that an initial obese environment triggers a detrimental state in ASCs that is not completely recovered after weight loss. © 2016 The Obesity Society. This article was published in Obesity (Silver Spring) and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords