alexa O-diphenol O-methyltransferases of healthy and tobacco-mosaic-virus-infected hypersensitive tobacco.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Legrand M, Fritig B, Hirth L

Abstract Share this page

Abstract Three distinct o-diphenol O-methyltransferases (OMTs) were found in leaves of Nicotiana tabacum, variety Samsun NN. They could be clearly distinguished by differences in elution pattern upon chromatography on DEAE-cellulose and in specificity towards 16 diphenolic substrates. The phenylpropanoids caffeic acid and 5-hydroxyferulic acid, whose importance as lignin precursors is well known, were the best substrates of OMT I, but they were also efficiently methylated by the two other OMTs that showed a broader substrate specificity. The highest rates of methylation were observed by assaying these latter enzymes with catechol, homocatechol and protocatechuic aldehyde. The flavonoid quercetin, the major o-diphenol of tobacco leaves, was a good substrate for OMTs II and III, but was also methylated significantly by OMT I. The tobacco OMTs showed both para-and meta-directing activities with protocatechuic acid, protocatechuic aldehyde and esculetin as substrates. Para-O-methylation of the former substrate arose almost exclusively from OMT I whereas that of the two latter substrates from all three enzymes. In healthy leaves the total O-methylating activity varied very much with the batch of plants whereas the relative contributions of the three enzymes were rather constant. On an average, OMTs I, II and III acounted towards caffeic acid, respectively. In tobacco mosaic virus-infected leaves carrying local necrotic lesions we found the same three OMTs with the same substrate specificities, but with increased activities. The degree of stimulation of both OMTs II and III was 2-3 times greater than that of OMT I when the leaves had a moderate number of lesions, and 3-5 times greater with large number of lesions. It is very likely that the changes in both the pattern of the O-methylating enzymes and the concentrations of the naturally occuring o-diphenolic substrates are related to an increased biosynthesis of lignins and of lignin-like compounds. These aromatic polymers could be involved in the cell wall thickening associated with the hypersensitive reaction and with the resistance to virus spread that occur in the cells surrounding the local lesions. This article was published in Planta and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords