alexa Odorant-selective genes and neurons mediate olfaction in C. elegans.
Neurology

Neurology

Neurochemistry & Neuropharmacology

Author(s): Bargmann CI, Hartwieg E, Horvitz HR

Abstract Share this page

Abstract Olfaction is a versatile and sensitive mechanism for detecting volatile odorants. We show that the nematode C. elegans detects many volatile chemicals, which can be attractants, repellents, or attractants at low concentrations and repellents at high concentrations. Through laser ablation, we have identified chemosensory neurons that detect volatile odorants. Chemotaxis to volatile odorants requires different sensory neurons from chemotaxis to water-soluble attractants, indicating that C. elegans might have senses that correspond to smell and taste, respectively. Single neurons have complex sensory properties, since six distinguishable volatile odorants are sensed by only two types of sensory neurons. Chemotaxis to subsets of volatile odorants is disrupted by mutations in the odr genes, which might be involved in odorant sensation or signal transduction.
This article was published in Cell and referenced in Neurochemistry & Neuropharmacology

Relevant Expert PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords