alexa Oligomerization of G protein-coupled receptors: biochemical and biophysical methods.
Pharmaceutical Sciences

Pharmaceutical Sciences

Biochemistry & Pharmacology: Open Access

Author(s): Kaczor AA, Selent J

Abstract Share this page

Abstract Dimerization and oligomerization of G protein-coupled receptors (GPCRs), proposed almost 30 years ago, have crucial relevance for drug design. Indeed, formation of GPCR oligomers may affect the diversity and performance by which extracellular signals are transferred to G proteins in the process of receptor transduction. Thus, the control of oligomer assembly/disassembly and signaling will be a powerful pharmacological tool. This, however, requires (i) the determination that oligomerization takes place between particular receptors, (ii) the confirmation that the oligomer has pharmacological importance and (iii) the availability of the oligomer 3D structure. This review aims at presenting experimental methods which unveil the complexity of GPCR dimerization/oligomerization focusing on biochemical and biophysical approaches. In total, we review 22 methods, including biochemical methods (radiation inactivation technique, receptor co-expression and trans-complementation studies, cross-linking experiments, co-immunoprecipitation and immunoblotting studies and analysis of receptor mutants and chimeras) and biophysical methods (Fluorescence Resonance Energy Transfer, (FRET), including photobleaching FRET (pb-FRET) and Time-Resolved FRET (TR-FRET), Luminescence Resonance Energy Transfer (LRET), Bioluminescence Resonance Energy Transfer (BRET), Bimolecular Fluorescence Complementation (BiFC), Luminescence Fluorescence Complementation (BiLC), Fluorescence Recovery after Photobleaching (FRAP), Confocal Microscopy, Immunofluorescence Microscopy, Single Fluorescent-Molecule Imaging, Transmission Electron Microscopy, Immunoelectron Microscopy, Atomic Force Microscopy, Total Internal Reflectance Fluorescence Microscopy (TIRFM) and X-ray Crystallography). For each method the scientific basis of the approach is shortly described followed by the extensive description of its application for studying GPCR oligomers presented according to their classes and families. Based on the wealth of experimental evidence, there is no doubt about the existence of GPCR dimers, oligomers and receptor mosaics which constitute a new and highly promising group of novel drug targets for more selective and safer drugs.
This article was published in Curr Med Chem and referenced in Biochemistry & Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords