alexa Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains.
Pharmaceutical Sciences

Pharmaceutical Sciences

Biochemistry & Pharmacology: Open Access

Author(s): Bravo A, Gmez I, Conde J, MuozGaray C, Snchez J,

Abstract Share this page

Abstract Bacillus thuringiensis Cry1A toxins, in contrast to other pore-forming toxins, bind two putative receptor molecules, aminopeptidase N (APN) and cadherin-like proteins. Here we show that Cry1Ab toxin binding to these two receptors depends on the toxins' oligomeric structure. Toxin monomeric structure binds to Bt-R1, a cadherin-like protein, that induces proteolytic processing and oligomerization of the toxin (Gomez, I., Sanchez, J., Miranda, R., Bravo A., Soberon, M., FEBS Lett. (2002) 513, 242-246), while the oligomeric structure binds APN, which drives the toxin into the detergent-resistant membrane (DRM) microdomains causing pore formation. Cleavage of APN by phospholipase C prevented the location of Cry1Ab oligomer and Bt-R1 in the DRM microdomains and also attenuates toxin insertion into membranes despite the presence of Bt-R1. Immunoprecipitation experiments demonstrated that initial Cry1Ab toxin binding to Bt-R1 is followed by binding to APN. Also, immunoprecipitation of Cry1Ab toxin-binding proteins using pure oligomeric or monomeric structures showed that APN was more efficiently detected in samples immunoprecipitated with the oligomeric structure, while Bt-R1 was preferentially detected in samples immunoprecipitated with the monomeric Cry1Ab. These data agrees with the 200-fold higher apparent affinity of the oligomer than that of the monomer to an APN enriched protein extract. Our data suggest that the two receptors interact sequentially with different structural species of the toxin leading to its efficient membrane insertion. This article was published in Biochim Biophys Acta and referenced in Biochemistry & Pharmacology: Open Access

Relevant Expert PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords