alexa On estimation of the variance in Cochran-Armitage trend tests for genetic association using case-control studies.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Zheng G, Gastwirth JL

Abstract Share this page

Abstract The Cochran-Armitage trend test has been used in case-control studies for testing genetic association. As the variance of the test statistic is a function of unknown parameters, e.g. disease prevalence and allele frequency, it must be estimated. The usual estimator combining data for cases and controls assumes they follow the same distribution under the null hypothesis. Under the alternative hypothesis, however, the cases and controls follow different distributions. Thus, the power of the trend tests may be affected by the variance estimator used. In particular, the usual method combining both cases and controls is not an asymptotically unbiased estimator of the null variance when the alternative is true. Two different estimates of the null variance are available which are consistent under both the null and alternative hypotheses. In this paper, we examine sample size and small sample power performance of trend tests, which are optimal for three common genetic models as well as a robust trend test based on the three estimates of the variance and provide guidelines for choosing an appropriate test. This article was published in Stat Med and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version