alexa On gene ranking using replicated microarray time course data.


Journal of Biometrics & Biostatistics

Author(s): Tai YC, Speed TP

Abstract Share this page

Abstract Consider the ranking of genes using data from replicated microarray time course experiments, where there are multiple biological conditions, and the genes of interest are those whose temporal profiles differ across conditions. We derive a multisample multivariate empirical Bayes' statistic for ranking genes in the order of differential expression, from both longitudinal and cross-sectional replicated developmental microarray time course data. Our longitudinal multisample model assumes that time course replicates are independent and identically distributed multivariate normal vectors. On the other hand, we construct a cross-sectional model using a normal regression framework with any appropriate basis for the design matrices. In both cases, we use natural conjugate priors in our empirical Bayes' setting which guarantee closed form solutions for the posterior odds. The simulations and two case studies using published worm and mouse microarray time course datasets indicate that the proposed approaches perform satisfactorily. This article was published in Biometrics and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version