alexa On L1 Minimization for Ill-Conditioned Linear Systems with Piecewise Polynomial Solutions
Mathematics

Mathematics

Journal of Physical Mathematics

Author(s): Castanon JA

Abstract Share this page

This thesis investigates the computation of piecewise polynomial solutions to ill- conditioned linear systems of equations when noise on the linear measurements is observed. Specifically, we enhance our understanding of and provide qualifications on when such ill-conditioned systems of equations can be solved to a satisfactory accuracy. We show that the conventional condition number of the coefficient matrix is not sufficiently informative in this regard and propose a more relevant conditioning measure that takes into account the decay rate of singular values. We also discuss interactions of several factors affecting the solvability of such systems, including the number of discontinuities in solutions, as well as the distribution of nonzero entries in sparse matrices. In addition, we construct and test an approach for computing piecewise polynomial solutions of highly ill-conditioned linear systems using a randomized, SVD-based truncation, and L1-norm regularization. The randomized truncation is a stabilization technique that helps reduce the cost of the traditional SVD truncation for large and severely ill-conditioned matrices. For L1-minimization, we apply a solver based on the Alternating Direction Method. Numerical results are presented to compare our approach that is faster and can solve larger problems, called RTL1 (randomized truncation L1-minimization), with a well-known solver PP-TSVD.

  • To read the full article Visit
  • Open Access
This article was published in n/a and referenced in Journal of Physical Mathematics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords