alexa On muscle spindles, dystonia and botulinum toxin.


International Journal of Neurorehabilitation

Author(s): Rosales RL, Dressler D

Abstract Share this page

Abstract Dystonia may produce co-contractions and constant strain in numerous muscle fibers, including those of the muscle spindles. As proprioceptors, muscle spindles detect dynamic or static changes in muscle length and their afferent projections to the spinal cord play a central role in control of antagonistic muscles. Their parallel arrangement with extrafusal muscle fibers and association with the earlier recruited oxidative motor units allow them to conveniently sample the activity of all motor units and effectively modulate movement. At the same time, fusimotor muscle spindle innervation contracts the striated polar portions of the intrafusal muscle fibers and prevents their slackening during extrafusal muscle contractions. Botulinum toxin remains the most efficient therapy of dystonia. Its muscular mechanism of action is hinged on cholinergic blockade not only of extrafusal, but also of intrafusal muscle fibers. Besides being a targeted muscular therapy, the alteration of the corresponding sensory input following an effect of botulinum toxin on the intrafusal muscle fibers is pivotal in modulating loss of pre-synaptic inhibition in dystonia, including suppression of the tonic vibration reflex. Whether or not trans-synaptic botulinum toxin migration occurs, a modification of the central motor programming is bound to happen in dystonia, with botulinum toxin acting either as another 'sensory trick' or as a form of 'short-term plasticity'. Knowledge of the muscle spindle anatomy and function is key to unify our understanding of abnormal movements and of effects of botulinum toxin therapy. Thus, in dystonia, overactivity of muscles and increased spindle sensitivity are germane to botulinum toxin targets of action. This article was published in Eur J Neurol and referenced in International Journal of Neurorehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

  • Xuejun H Parsons
    Direct conversion of pluripotent human embryonic stem cells into functional human neuronal or cardiomyocyte cell therapy derivatives for regenerative medicine
    PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version