alexa On the mechanism of organelle degradation in the vertebrate lens.


Journal of Clinical & Experimental Ophthalmology

Author(s): Bassnett S

Abstract Share this page

Abstract The programmed elimination of cytoplasmic organelles occurs during terminal differentiation of erythrocytes, keratinocytes and lens fiber cells. In each case, the process is relatively well understood phenomenologically, but the underlying molecular mechanisms have been surprisingly slow to emerge. This brief review considers the particular case of the lens where, in addition to their specialized physiological roles, organelles represent potential sources of light scattering. The article describes how the elimination of organelles from lens cells located on the visual axis contributes to the transparency of lens tissue. Classic anatomical studies of lens organelle degradation are discussed, along with more contemporary work utilizing confocal microscopy and other imaging modalities. Finally, recent data on the biochemistry of organelle degradation are reviewed. Several review articles on lens organelle degradation are available [Wride, M.A., 1996. Cellular and molecular features of lens differentiation: a review of recent advances. Differentiation 61, 77-93; Wride, M.A., 2000. Minireview: apoptosis as seen through a lens. Apoptosis 5, 203-209; Bassnett, S., 2002. Lens organelle degradation. Exp. Eye Res. 74, 1-6; Dahm, R., 2004. Dying to see. Sci. Am. 291, 82-89] and readers are directed to these for a comprehensive discussion of the earlier literature on this topic.
This article was published in Exp Eye Res and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version