alexa On the structure of ionic liquids: comparisons between electronically polarizable and nonpolarizable models I.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Data Mining in Genomics & Proteomics

Author(s): Yan T, Wang Y, Knox C, Yan T, Wang Y, Knox C, Yan T, Wang Y, Knox C

Abstract Share this page

Abstract An electronically polarizable model, based on the AMBER nonpolarizable model, has been developed for the ionic liquid (IL) 1-ethyl-3-methyl-imidazolium nitrate (EMIM(+)/NO(3)(-)). Molecular dynamics simulation studies were then performed with both the polarizable and nonpolarizable models. These studies suggest EMIM(+) cations have a strong tendency to pack with their neighboring imidazolium rings nearly parallel to each other, bridged by hydrogen bonds to NO(3)(-) anions. Polarization has two key effects, (1) additional charge-dipole and dipole-dipole interactions enhance short-range electrostatic interactions and (2) screening reduces long-range electrostatic interactions. As a result, the polarizable model exhibited enhanced hydrogen bonding compared to the nonpolarizable model, while the latter retained more ordered long-range spatial correlations than the former. Though EMIM(+) has a very short nonpolar ethyl tail group, spatial heterogeneity, previously observed with long-chain ILs, was observed in this system and has been quantified using the heterogeneity order parameter. The polarizable model was slightly more heterogeneous than the nonpolarizable model. The enhanced spatial heterogeneity of the polarizable model is again attributed to the stronger short-range electrostatic interactions, which "push" the nonpolar tails away from the polar heads, leading to more aggregation and a strongly altered ionic packing pattern around NO(3)(-) as observed by a different anion-anion center-of-mass partial radial distribution function g(--) (r). Interestingly, both models seemed to "remember" the crystal structure even at temperatures significantly higher (approximately 90 K higher) than the melting point (311 K). Along with the results on the dynamical properties reported in the accompanying paper, the current study demonstrates that electronic polarizability is significant in ionic liquid systems. This article was published in J Phys Chem B and referenced in Journal of Data Mining in Genomics & Proteomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords