alexa On why thylakoids energize ATP formation using either delocalized or localized proton gradients - a ca(2+) mediated role in thylakoid stress responses.
Biochemistry

Biochemistry

Bioenergetics: Open Access

Author(s): Dilley RA

Abstract Share this page

Abstract By the early 1970s, the chemiosmotic hypothesis of Peter Mitchell was widely accepted by bioenergetics researchers as the best conceptual scheme to explain how ATP is formed in oxidative and photosynthetic phosphorylation. At about the same time, however, work from a few laboratories suggested that some aspects of that elegant, relatively simple hypothesis required revision - not abandonment, but refinement to accommodate more complex movements of protons in the ATP formation mechanism than originally envisioned by Peter Mitchell. In some situations it appeared that protons were constrained to localized domains rather than always delocalized within an enclosed vesicle as envisioned by chemiosmosis. This minireview tells that story from my perspective, as one of the researchers involved in the experimental approaches that revealed more complex energy coupling proton flux patterns. Ionic conditions during isolated thylakoid storage were found to reversibly switch the [Formula: see text] gradient driving ATP formation between delocalized and localized energy coupling modes. Thylakoid accessible Ca(2+) ions proved to be the switching factor that was responding to the ionic conditions in the storage treatment. The mechanism of Ca(2+) was at least partially demystified when it was shown that the reversible switching between [Formula: see text] energy coupling modes involved Ca(2+) interactions with the 8 kDa CF(0) (the H(+) channel) subunit in a type of H(+) flux gating action. Other experiments showed that the Ca(2+) gating of H(+) flux into the lumen may be a critical regulatory factor in controlling the lumen pH and thereby help regulate the activity of the violaxanthin de-epoxidase enzyme, a key part of the chloroplast photoprotective response to over-energization (excess light) stress. This article was published in Photosynth Res and referenced in Bioenergetics: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords