alexa Oncogenes and tumor suppressors regulate glutamine metabolism in cancer cells.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Kim MH, Kim H

Abstract Share this page

Abstract Several hallmarks of cancer cells are their display of metabolic changes and enhanced proliferation. Highly proliferating cells utilize glutamine as a source of nitrogen, and therefore, one of the commonly seen metabolic changes is increased glutaminolysis, or glutamine catabolism. In addition, glutamine is an important anaplerotic source by which cells support the pools of TCA cycle intermediates in Myc-expressing cancer cells. Glutamine is converted to aspartate, which forms oxaloacetate, malate, and pyruvate. These conversions increase the NADPH/NADP(+) ratio and maintain redox balance, which supports proliferation in K-ras-expressing cells. Therefore, glutamine is important for cancer cell proliferation and survival. On the other hand, glutamine stimulates the activation of the tumor suppressor p53, which induces apoptosis and tumor regression. The tumor suppressor SIRT4 inhibits glutamate dehydrogenase, which converts glutamic acid to α-ketoglutarate, an intermediate in the TCA cycle. Overall, the expression levels of oncogenes and tumor suppressors are critical to determine whether glutamine supports or suppresses proliferation and survival of cancer cells.
This article was published in J Cancer Prev and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords