alexa Opposing actions of heat shock protein 90 and 70 regulate nicotinamide adenine dinucleotide phosphate oxidase stability and reactive oxygen species production
Surgery

Surgery

Medical & Surgical Urology

Author(s): Fulton DJ

Abstract Share this page

OBJECTIVE: Excessive reactive oxygen species contribute to vascular dysfunction. We have previously shown that heat shock protein (Hsp90) inhibitors potently suppress Nox 1 to 3 and 5, and the goals of this study were to identify how molecular chaperones regulate Nox function. METHODS AND RESULTS: In vitro, protein expression of Nox 1 to 2, 5 was decreased by Hsp90 inhibitors in multiple cell types (human pulmonary artery endothelial cells, neutrophils, macrophages, and human saphenous vein). In mice treated with Hsp90 inhibitors, Nox1 expression was reduced in lung along with reduced reactive oxygen species from leukocytes. Elevated reactive oxygen species production in obese (db/db) aorta was suppressed by Hsp90 inhibition. Hsp90 inhibitors did not alter Nox5 micro RNA levels, and proteasome inhibition prevented Nox2 and 5 protein degradation and increased ubiquitin incorporation. Inhibition of Hsp90 upregulated the expression of Hsp70 and Hsp70-bound Nox2, 5 and promoted degradation. Silencing Hsp70 prevented Hsp90 inhibitor-mediated degradation of Nox5. The Hsp70-regulated ubiquitin ligase, carboxyl terminus of Hsp70-interacting protein (CHIP), also bound Nox5 and promoted increased Nox5 ubiquitination and degradation. The chaperone binding and ubiquitination domains of CHIP were required, and the silencing of CHIP blunted Hsp90 inhibitor-mediated degradation of Nox2 and 5. CONCLUSIONS: We conclude that Hsp90 binds to and regulates Nox protein stability. These actions are opposed by Hsp70 and CHIP, which promote the ubiquitination and degradation of Nox proteins and reduce reactive oxygen species production.

This article was published in Arterioscler Thromb Vasc Biol and referenced in Medical & Surgical Urology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords