alexa Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Lodha B, Chaudhari S

Abstract Share this page

Abstract Degradation of dyes especially, azo dyes are difficult due to their complex structure and synthetic nature. The main objective of this study was to evaluate the Fenton-biological (aerobic) treatment train for decolorization and mineralization of azo dyes viz. Reactive Black 5 (RB5), Reactive Blue 13 (RB13) and Acid Orange 7 (AO7). The objective of Fenton treatment was only to decolorize the dyes (breakage of -NN-), as it was considered that after breakage of -NN-, the dyes will become amenable to biodegradation and can be further treated in aerobic biological system. Hence studies were carried out to optimize the lower Fenton's doses for decolorization of dyes. The optimum doses for decolorization (>95\%) of all the three dyes were found out to be 15 mgL(-1) of Fe(2+) (0.27 mM) and 50 mgL(-1) (1.47 mM) of H(2)O(2) dose at optimum pH 3. Further it was also investigated that at lower doses, the main problem of Fenton process (sludge generation) can also be minimized. Later the mineralization of the dye (removal of aromatic amines) was achieved in the aerobic biological treatment system. Overall reduction of 64, 89 and 75\% in the aromatic amines (at 254 nm), 88, 95 and 78\% in naphthalene ring associated compounds (near 310 nm) and 49, 89 and 91\% reduction in benzene ring associated compounds (near 226 nm) were observed for RB5, RB13 and AO7, respectively. Thus this treatment system seems to be quite effective and economical option for the treatment of recalcitrant compounds like dyes, as the cost in the chemical treatment is considered mainly due to chemicals thus at lower doses the operational cost is saved. Further, as the sludge generation was almost negligible at lower doses, thus the savings in cost of handling and disposal of hazardous sludge also adds to economy of treatment. This article was published in J Hazard Mater and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Relevant Speaker PPTs

  • Praveena T
    The structural and molecular insights into natural killer T cell receptor (NKT) and CD1d-glycolipid recognition
    PPT Version | PDF Version
  • Guijun Wang
    Design, Synthesis and Characterization of Glycolipids and Glycoclusters as Molecular Gelators
    PPT Version | PDF Version
  • Yung-Chih Kuo
    “Yung-Chih Kuo-National-Chung-Cheng-University-Republic-of-China-Targeting-delivery-of-etoposide-to-inhibit-the-growth-of-human-glioblastoma-multiforme-using-lactoferrin-and-folic-acid-grafted-poly(lactide-co-glycolide)-nanoparticles”
    PPT Version | PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version