alexa Optimization of high-pressure die-casting process parameters using artificial neural network
Engineering

Engineering

Advances in Automobile Engineering

Author(s): Jiang Zheng, Qudong Wang, Peng Zhao

Abstract Share this page

High-pressure die casting is a versatile process for producing engineered metal parts. There are many attributes involved which contribute to the complexity of the process. It is essential for the engineers to optimize the process parameters and improve the surface quality. However, the process parameters are interdependent and in conflict in a complicated way, and optimization of the combination of processes is time-consuming. In this work, an evaluation system for the surface defect of casting has been established to quantify surface defects, and artificial neural network was introduced to generalize the correlation between surface defects and die-casting parameters, such as mold temperature, pouring temperature, and injection velocity. It was found that the trained network has great forecast ability. Furthermore, the trained neural network was employed as an objective function to optimize the processes. The optimal parameters were employed, and the castings with acceptable surface quality were achieved.

This article was published in springer and referenced in Advances in Automobile Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords