alexa Optimizing electrode placement for hemodynamic benefit in cardiac resynchronization therapy.
Cardiology

Cardiology

Journal of Clinical & Experimental Cardiology

Author(s): Babbs CF

Abstract Share this page

Abstract BACKGROUND: Research is needed to explore the relative benefits of alternative electrode placements in biventricular and left ventricular (LV) pacing for heart failure with left bundle branch block (LBBB). METHODS: A fast computational model of the left ventricle, running on an ordinary laptop computer, was created to simulate the spread of electrical activation over the myocardial surface, together with the resulting electrocardiogram, segmental wall motion, stroke volume, and ejection fraction in the presence of varying degrees of mitral regurgitation. Arbitrary zones of scar and blocked electrical conduction could be modeled. RESULTS: Simulations showed there are both sweet spots and poor spots for LV electrode placement, sometimes separated by only a few centimeters. In heart failure with LBBB, pacing at poor spots can produce little benefit or even reduce pumping effectiveness. Pacing at sweet spots can produce up to 35\% improvement in ejection fraction. Relatively larger benefit occurs in dilated hearts, in keeping with the greater disparity between early and late activated muscle. Sweet spots are typically located on the basal to midlevel, inferolateral wall. Poor spots are located on or near the interventricular septum. Anteroapical scar with conduction block causes little shift in locations for optimal pacing. Hearts with increased passive ventricular compliance and absence of preejection mitral regurgitation exhibit greater therapeutic gain. The durations and wave shapes of QRS complexes in the electrocardiogram can help predict optimum electrode placement in real time. CONCLUSIONS: Differences between poor responders and hyperresponders to cardiac resynchronization therapy can be understood in terms of basic anatomy, physiology, and pathophysiology. Computational modeling suggests general strategies for optimal electrode placement. In a given patient heart size, regional pathology and regional dynamics allow individual pretreatment planning to target optimal electrode placement. ©2012, The Author. Journal compilation ©2012 Wiley Periodicals, Inc. This article was published in Pacing Clin Electrophysiol and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords