alexa Optimum designs for next-generation sequencing to discover rare variants for common complex disease.
Genetics & Molecular Biology

Genetics & Molecular Biology

Human Genetics & Embryology

Author(s): Shi G, Rao DC

Abstract Share this page

Abstract Recent advances in next-generation sequencing technologies make it affordable to search for rare and functional variants for common complex diseases systematically. We investigated strategies for enriching rare variants in the samples selected for sequencing so as to optimize the power for their discovery. In particular, we investigated the roles of alternative sources of enrichment in families through computer simulations. We showed that linkage information, extreme phenotype, and nonrandom ascertainment, such as multiply affected families, constitute different sources for enriching rare and functional variants in a sequencing study design. Linkage is well known to have limited power for detecting small genetic effects, and hence not considered to be a powerful tool for discovering variants for common complex diseases. However, those families with some degree of family-specific linkage evidence provide an effective sampling strategy to sub-select the most linkage-informative families for sequencing. Compared with selecting subjects with extreme phenotypes, linkage evidence performs better with larger families, while extreme-phenotype method is more efficient with smaller families. Families with multiple affected siblings were found to provide the largest enrichment of rare variants. Finally, we showed that combined strategies, such as selecting linkage-informative families from multiply affected families, provide much higher enrichment of rare functional variants than either strategy alone. © 2011 Wiley-Liss, Inc.
This article was published in Genet Epidemiol and referenced in Human Genetics & Embryology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version