alexa Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats.
Engineering

Engineering

Bioceramics Development and Applications

Author(s): Gorustovich AA, Steimetz T, Cabrini RL, Porto Lpez JM

Abstract Share this page

Abstract There is accumulating evidence that strontium (Sr)-containing bioceramics have positive effects on bone tissue repair. The aims of the present study were to evaluate the osteoconductivity of Sr-doped bioactive glass (BG) particles implanted in rat tibia bone marrow, and characterize the neoformed bone tissue by SEM-energy-dispersive X-ray microanalysis. Melt-derived BGs were prepared from a base 45S5 BG. Sr-doped glass (45S5.6Sr) was prepared using 6 wt \% SrO as a substitute for the CaO. Histological analysis using undecalcified sections showed that new lamellar bone had formed along the surface of both 45S5 and 45S5.6Sr BG particles within 4 weeks. To evaluate osteoconductivity, affinity indices were calculated. At 30 days after implantation, 45S5 and 45S5.6Sr BGs had almost identical affinity indices (88\% +/- 7\% and 87\% +/- 9\%; p > 0.05). Strontium was not detected in the neoformed bone tissue surrounding 45S5.6Sr BG particles. These results indicate that 45S5.6Sr BG particles are osteoconductive when implanted inside the intramedullary canal of rat tibiae, and no alterations in bone mineralization, in terms of Ca/P ratio, were observed in the neoformed bone tissue around 45S5.6Sr BG particles. This article was published in J Biomed Mater Res A and referenced in Bioceramics Development and Applications

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords