alexa Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo.


Journal of Cardiovascular Diseases & Diagnosis

Author(s): Aikawa E, Nahrendorf M, Figueiredo JL, Swirski FK, Shtatland T,

Abstract Share this page

Abstract BACKGROUND: Arterial calcification is associated with cardiovascular events; however, mechanisms of calcification in atherosclerosis remain obscure. METHODS AND RESULTS: We tested the hypothesis that inflammation promotes osteogenesis in atherosclerotic plaques using in vivo molecular imaging in apolipoprotein E-/- mice (20 to 30 weeks old, n=35). A bisphosphonate-derivatized near-infrared fluorescent imaging agent (excitation 750 nm) visualized osteogenic activity that was otherwise undetectable by x-ray computed tomography. Flow cytometry validated the target specifically in osteoblast-like cells. A spectrally distinct near-infrared fluorescent nanoparticle (excitation 680 nm) was coinjected to simultaneously image macrophages. Fluorescence reflectance mapping demonstrated an association between osteogenic activity and macrophages in aortas of apolipoprotein E-/- mice (R2=0.93). Intravital dual-channel fluorescence microscopy was used to further monitor osteogenic changes in inflamed carotid arteries at 20 and 30 weeks of age and revealed that macrophage burden and osteogenesis concomitantly increased during plaque progression (P<0.01 and P<0.001, respectively) and decreased after statin treatment (P<0.0001 and P<0.05, respectively). Fluorescence microscopy on cryosections colocalized near-infrared fluorescent osteogenic signals with alkaline phosphatase activity, bone-regulating protein expression, and hydroxyapatite nanocrystals as detected by electron microscopy, whereas von Kossa and alizarin red stains showed no evidence of calcification. Real-time reverse-transcription polymerase chain reaction revealed that macrophage-conditioned media increased alkaline phosphatase mRNA expression in vascular smooth muscle cells. CONCLUSIONS: This serial in vivo study demonstrates the real-time association of macrophage burden with osteogenic activity in early-stage atherosclerosis and offers a cellular-resolution tool to identify preclinical microcalcifications. This article was published in Circulation and referenced in Journal of Cardiovascular Diseases & Diagnosis

Relevant Expert PPTs

Relevant Speaker PPTs

  • Moorkath Nandakumaran
    Hyperglycemia alters maternal-fetal transport kinetics of manganese, chromium and vanadium in diabetic model human placental lobule in vitro : Implications for diabetes mellitu
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Simona Claudia Cambrea
    Strategies for materno-fetal transmission of HIV, HIV and HBV coinfections in Constanta - Romania
    PDF Version
  • Guinchard Emmanuelle
    Non-invasive fetal RHD genotyping: Validation of the method with 200 patients
    PDF Version
  • Dong Zheng
    The protective effect of Astaxanthin on fetal alcohol spectrum disorder in mice
    PPT Version | PDF Version

Recommended Conferences

  • 19th Annual Cardiology Congress
    August 31-September 01, 2017 Philadelphia, USA
  • 23rd International Conference on Heart Diseases & Angiology
    Oct 16-17, 2017 Budapest, Hungary
  • 20th European Cardiology Congress
    October 16-18, 2017 Budapest, Hungary
  • 3rd Global Summit on Heart Diseases
    November 02-04, 2017 Bangkok, Thailand
  • 22nd World Cardiology Congress
    December 11-12, 2017 Rome, Italy

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version